

Freshwater Ecosystem classifications for natural resource planning in NSW

Planning activities using freshwater ecosystem classifications in NSW

- Biodiversity management plans: Local government, CMAs, DECCW
- Catchment Action Plans: CMAs setting targets, meeting targets
- Investment prioritization: allocation of funds to landholder for on-ground actions

Planning for biodiversity conservation

- Persistence (including climate change considerations).
- Spatial prioritization
 - Places to protect
 - Places to restore
- Principles
 - Comprehensivenes
 - Adequacy
 - Representativeness
 - Efficiency
- Conservation Science: Systematic conservation planning

Classification and planning

- Targeting each major type of ecosystem
- Identifying types is critical for planning
- Effectiveness of plans depend on how well regional biodiversity is represented by classifications

An ecological classification of the rivers of NSW¹

Department of Environment, Climate Change and Water NSW

¹Turak E. & Koop K. (2008) A multi-attribute ecological river typology for assessing river condition and conservation planning. Hydrobiologia, 603, 83-104.

Ecological distance among river types

Edge River type	Dissimilarity						
	E1	E2	E3	E4	E6		
E1	0						
E2	0.23	0					
E3	0.47	0.54	0				
E4	0.33	0.35	0.57	0			
E6	0.25	0.37	0.32	0.47	0		
E7	0.17	0.32	0.51	0.27	0.35		

Department of Environment, Climate Change and Water NSW

8

Department of Environment, Climate Change and Water NSW

²Turak E, Ferrier S, Barrett TW, Mesley E, Drielsma MJ, Manion G, Doyle G, Stein J and Gordon G. (in press). Planning for persistence of river biodiversity: exploring alternative futures using process-based scenario modelling. *Freshwater Biology*.
³Stein, J.L, Stein J.A., Nix, H.A. 2002, Spatial analysis of anthropogenic river disturbance at regional and continental scales: identifying the wild rivers of Australia Landscape and Urban Planning, 60, 1-25.

Outputs: biodiversity condition and conservation value of river sections in the Northern Rivers Region⁴

Environment, Climate Change and Water NSW

⁴DECC 2009 Draft Northern Rivers Regional Biodiversity Management Plan: Appendix 9. Planning for the persistence of river biodiversity in the Northern Rivers Region. Department of Environment and Climate Change.

Outputs: catchment protection and restoration priorities in the for river biodiversity in the Northern Rivers region

Legend

How about wetlands ?

- A top-down hierarchical, hydrogeomorphic classification
 - Not mapped
 - Exploring mapping rules using classification trees

Vegetation formations⁵

- State-wide mapping at poor resolution
- Converted in to finer resolution maps in the Hunter region
- Vegetation Classification and Assessment database⁶
 - Detailed mapping in the Murray
 - Plant assemblage matrix can be constructed

⁴Keith D.A. 2004. Ocean Shores to Desert Dunes. The Native Vegetation of NSW and the ACT. Department of Environment and Conservation

⁶Benson, J.S. (2006) New South Wales Vegetation Classification and Assessment: Introduction - the classification, database, assessment of protected areas and threat status of plant communities. *Cunninghamia* 9(3): 329-381.

Wetland vegetation formations in the Hunter region

Ecological distance between wetland types

Wetland type	Dissimilarity						
	W1	W2	W3	W4	W5		
W1	0						
W2	0.827	0					
W3	1	0.959	0				
W4	0.871	0.938	0.797	0			
W5	0.976	0 955	0 922	0 971	0		

¹Stein, J.L, Stein J.A., Nix, H.A. 2002, Spatial analysis of anthropogenic river disturbance at regional and continental scales: identifying the wild rivers of Australia Landscape and Urban Planning, 60, 1-25.

²Turak E. & Koop K. (2008) A multi-attribute ecological river typology for assessingriver condition and conservation planning. Hydrobiologia, 603, 83-104. ³Turak E, Ferrier S, Barrett TW, Mesley E, Drielsma MJ, Manion G, Doyle G, Stein J & Gordon G. (in press). Planning for persistence of river biodiversity: exploring alternative futures using process-

based scenario modelling. Freshwater Biology.

Wyong wetlands: vegetation formations and survey area

Wetland conservation priority

Wetland types

Aquifer types in the Hunter region

Regional biodiversity assessment of different aquatic

ecosystem types in the Hunter

Department of Environment, Climate Change and Water NSW

19

Spatial priorities for river restoration in the Murrumbidgee CMA region

Defining river types in the Murrumbidgee¹

Top down vs. bottom-up classifications

- It does not matter where you start.
- Top down classifications need to be validated, often modified
 - Redundancy
 - Splitting
- Data rich areas can be used for this

Outlook for the MDB plan

- **Focus on biodiversity**
- Scientific rigour is essential in each major step:
 - classification and
 - application to planning
- MDB is data rich !
 - Fish and macroinvertebrate data
 - Consistent collection
 - Vegetation mapping
 - Disturbance data layers